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Abstract

Let ¢ be a prime number and let L/ K be a finite Galois ¢ -extension of function

fields of one variable with field of constants %, an algebraically closed field of

characteristic p # /. In this paper, we obtain two explicit characterizations of the
non-injective component of the ¢ -part of the generalized Jacobian e (¢), where

the modulus 91 in L is induced by a modulus 9t in K, which contains in its
support all the prime divisors of K ramified in L. We find explicitly the
decomposition of the dual of the ¢ -part of the generalized Jacobian }I(f‘()om) as

direct sum of indecomposable F,;[G]-modules. We determine an exact sequence of
F;[G] -modules that characterizes implicitly the ¢-part of the usual Jacobian

%41 () in the general case.

1. Introduction

Let & be an algebraically closed field of characteristic p > 0, ¢ be a
prime number, K /k be an algebraic function field of one variable with
field of constants k, and L/ K be a finite Galois ¢ -extension of function
fields with Galois group Gal(L / K) = G. The group G acts naturally on
the /-torsion of the Jacobian variety J; associated to the function field

L/ k. Hence, G acts by restriction on m J1,, the group of points of J; of

order dividing ¢™. Then, the direct limit J,(¢) := lim mlr = U mIL
¢ m=1 "

has a Z,[G]-module structure, where Z, denotes the ring of /-adic
integers and Z,[G] denotes the group ring over Z,. We have that Jj (¢)
is naturally G-isomorphic to ¢z, (¢), the Sylow /-subgroup of the group

¢y of divisor classes of degree 0 of L. It is well known that, for 7 = p,

% (0) = R*L as groups, where g; denotes the genus of L, R := %,

‘
and Q, denotes the field of ¢-adic numbers.

The basic tool used with success in the study of the Galois module

structure of the usual Jacobian %y (¢), i.e., in the obtention of the
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decomposition of @ (¢) as direct sum of indecomposable Z,[G]-modules,
in both cases / = p and ¢ # p, has turned out to be the consideration of
the generalized Jacobian variety @, where the modulus 91 in L is

induced from a modulus 9 in K, which contains in its support all the

primes ramified in L, and the exact sequence

0 R ‘(()Om(f)——) ((/OL(K)——) 0, (1)

where % (¢) is the ¢-torsion of . and R is the kernel of the natural
map, which was characterized as Z,[G]-module by Villa and Madan (see

[17], Theorem 1, page 257).

When ¢ = p, we have that the generalized Jacobian %y (¢) is an

injective Z,[G]-module, that is, (/) = R[G]*, for some u >0 (see
[16], Proposition 8).

In the case / # p, ¢y (/) is always non-injective as Z,[G]-module
(see [18], Theorem 6). In fact, one has that ¢ (¢) = R[G]* ® S with S an

indecomposable Z,[G]-module, which is isomorphic to R® as groups,
where s = |G|(d —-1) + 1, d denotes the minimum number of generators of

G and |G| denotes the order of G.

The use of the dual of Heller’s loop operator Q# has been very
effective in the study of the non-injective component of ,%, the ¢-part

of €y (¢). More explicitly, we want to establish an exact sequence of

F,[G]-modules

0 M > F,[G]P 1oL, 50, (2)
where F, denotes the finite field with ¢ elements.

To relate the ¢ -parts of sequences (1) and (2), it is very important to

know explicitly the structure as F,[G]-module of %y, the ¢-part of the

generalized Jacobian % (/).
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In particular, since ,@gy 1is the subgroup of elements of order

dividing ¢ of ¢ (¢), we have that %y is an F,[G]-module and

(Com = F[G]* @8,
where we denote by ,S, the ¢-part of the Z,[G]-module S.

In this paper, we obtain two explicit characterizations of the F,[G]-
module ,S, Theorem 3.8, and Proposition 4.6. For L /K, any finite

Galois unramified /-extension, in Section 5, we obtain explicitly the

decomposition of ,%; as direct sum of indecomposable F,[G]-modules,

this is (36). We determine explicitly the Galois module structure of the
dual of the ¢-part of the generalized Jacobian X(,%q ), that is, we

obtain explicitly the decomposition of X(,%gqn) as a direct sum of
indecomposable F,[G]-modules, this structure is obtained in Theorem 5.3.

In Section 2, we collect basic results that we use along the paper. In
Sections 3 and 4, we give the proofs of Theorem 3.8 and Proposition 4.6,

respectively.

In Section 5, we obtain an exact sequence of F,[G]-modules that

implicitly characterizes the Galois module structure of the ¢ -part of usual

Jacobian ¢z (¢), i.e., we determine the value of B appearing in (2), for an

arbitrary Galois /-extension L/ K.

2. Notations and Auxiliary Results

Now, we introduce the objects that we will be working along with the
paper. L/ K denotes a finite Galois /-extension of function fields of
order (" with Galois group G = Gal(L / K) and field of constants k, an
algebraically closed field of characteristic p = /.

Let

P ={R, By ..., R},
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and

F{oict .ty ielt .. v,

where # consists of all the different prime divisors of K ramified in L,

7 is the set of prime divisors ;’Zj(i) of L such that ;}Zj(i) divides the prime

divisor #, for 1 < j < ¢" ™™ and (" denotes the ramification index of

the prime divisor .

Let 91 be the modulus in K defined by:

S
i=1

Let 91 be the modulus in L induced by 9t (i.e., 9 is the conorm of 1),
given by:

N = Hz.

Qe
We use the following notation:

e P; isthe set of prime divisors of L,

e Y is the group of divisors of L relatively prime to M0,
® Yoo 1is the group of divisors of degree zero relatively prime to 0,

e Py is the group of principal divisors (a) such that o = 1 mod N,

Y
o Con = };) 1 is the group of classes of divisors of degree 0 associated
N

to ),

e Ly is the group of o € L such that (a) is relatively prime to N,

and

. L‘n(l) is the group of o € Ly such that o = 1 mod M.
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We denote by ¢ (/) = Js(¢), the Sylow ¢ -subgroup of ¢, and we

call it generalized Jacobian.

For any G-module A, the i-th Tate cohomology group H'(G, A) with
i €Z, is denoted by Hi(G, A). The trivial group is denoted by O,
whether its structure is additive or multiplicative. Also, we denote the
elements of A fixed by the action of G, by AY = {m € A‘gm = mVg e G}
and by Ng = N the norm (or trace) map, that is, if m € A, then N(m)

= ng c8&m (orzge G gm). Sometimes, we will use the additive notation

N(A) and some other the multiplicative notation A" for the norm of A.
On the other hand, A denotes the kernel of NV acting on A, IA
denotes the module generated by (gm-m|ge G, me A) and
I = (g -1|g € G) < Z/[G]. We denote by C,, the cyclic group with m
elements.

We remark that some results of this section are very well-known,
however, we decided to include them, some with their proofs, to make the

reading of the paper easier.

One of the main results, very frequently used during the present

work is the following result of which we present its proof.

Lemma 2.1 (Schanuel’s lemma for projective modules). Let P, and
P, be projective A-modules, where A is a commutative ring with identity.

If we have two exact sequences of A-modules:
0->B ->F »>X -0,
0> By > P, > X >0,

then P, ® By = P, ® B;.

Proof. Let ¢: P, > X and ¢ : P, > X denote the epimorphisms

of the exact sequences. Let

M ={(p, q) e P, ® PJo(p) = ¢'(q)}.
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If n: M — P, is the projection on the first coordinate of M, then = is an
epimorphism. In fact, since ¢’ is epimorphism, for every p € P, there

exists ¢ € Py such that ¢(p) = ¢'(¢), then (p, ¢) € M and =n(p, q) = p.
On the other hand,

ker(n) = {(0, ¢)¢(¢) = 0}
= ker(¢') = Bs.
Therefore, we have the exact sequence
0>By >M-—>PF —>0.
Since P, is projective this exact sequence splits, thus M = B, ® P,.
Similarly, we have an epimorphism n; : M — P, and using the same

previous argument, we obtain an exact sequence 0 > B; > M — P,

— 0. Therefore, M = B; & P,, proving the result. O

Remark 2.2. We have a dual of Schanuel’s lemma. That is,
Schanuel’s lemma for injective modules.

Let P, and P be two injective A-modules, where A is a commutative

ring with identity. Let us assume that we have two exact sequences of A-
modules:

0>X->P - B -0,
0> X —>PFP, > By >0,
then Pl @BzEPQ @B]_

Remark 2.3. If M is an F,[G]-module, then M is an injective F,[G]-
module, if and only if M is a projective F,[G]-module. Furthermore, when
M is an F,[G]-module, Lemma 2.1, and Remark 2.2 are equivalent.

For any Z,[G]-module M, we define X(M):= Homy, (M, R), the
Pontrjagin’s dual of M. We have what X(M) has a Z,[G]-module

structure given by:

if feX(M),geG, and x € M, then (g-f)(x) = f(g™ - x).
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A fundamental result on the Pontrjagin’s dual is the following
proposition. The proof can be found in [8], page 84.

Proposition 2.4 (Pontrjagin-Van Kampen). Let G be a finite ( -group
and let M be a Z,[G]-module such that M as group is locally compact in
the compact-open topology. Then, X(X(M)) = M as Z,[G]-modules. O

Lemma 2.5. Let G be a finite (-group and let H be a subgroup of G.
Then

(i) X(Z,) = R and X(R) = Z, as Z,[G]-modules.

() X¥(Z,[G/ H]) = R[G/ H] and X(R[G | H]) = Z,|G | H] as Z,[G]-

modules.

(i) If 0 > A - B —» C — 0 is an exact sequence of Z,[G]-modules,
then 0 — X(C) - X(B) > X(A) -> 0 is an exact sequence of Z,[G]-
modules.

Proof. We will only show the first isomorphisms of (i) and (i1), the

others are an immediate consequence of Proposition 2.4. If o € X(Z,)
= Homy, (Z;, R), let 6 : X(Z,) - R be given by 6(at) = a(l). It is easy
to see that 0 is an isomorphism, which shows (i).

Let ¢ € Homy (Z/[G/H], R). Then G acts on ¢ by (go00¢)(a)

= o(gla), with g € G, and a e Z,[G/ H]. Let 6 : X(Z,[G/H]) > R

[G/ H] be given by 6(p) = D o(c)o. It is easy to see that 6 is a
ceG/H

Z,|G]-isomorphism, this shows (ii).

On the other hand, since R[G] is an injective Z,[G]-module and
0>A—>B->C—>0 is an exact sequence of Z,[G]-modules, by

Theorem 8.4 of [2], page 36, we obtain the following exact sequence of
7,[G]-modules

0— Hong[G](C, R[G]) » HomZ(,;[G](B’ R[G]) » HomZ([G](A, R[G]) - 0.
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Finally, since Homy g)(M, R[G])=(Homgy, (M, R[G] )N = Homy, (M, R),
as Z,[G]-modules, we obtain (iii). O
If Pis an F/[G]-module, P*:= Homp, (P, F,) denotes the dual of P as

F, -vector space. We have what P* has an F,[G]-module structure given
by:

if fe P, geG,and x € P, then (g-f)(x) = f(g™! - x).

Remark 2.6. Since F, =,R c R, we have that for any F,[G]-module
P, P* = X(P) as F,[G]-modules.

Let v : F,[G] > F, be the augmentation F,[G]-epimorphism given
by:

w[zagg] - Yap
geG geG

The F,[G]-module, ,I; := ker(y) = { ) a8 IE‘/[G”Z ag = 0} is
geG geG

called the augmentation ideal of F,[G].

Lemma 2.7. Let G be a finite (-group and let P be an F,[G]-module.
Then

(i) dimp, (P) = dimg, (P*) and P = (P” )" as F,[G]-modules.

(i) (F,[G])" = F,[G] as F,[G]-modules.

(iii) (%j =,Ig as F,[G]-modules.
/

iv) If 0 > A > B —» C — 0 is an exact sequence of F,[G]-modules,
then 0 - C* - B* — A" — 0 is an exact sequence of F,[G]-modules.

Proof. (i) and (iv), are similar to Lemma 2.5. For (i1) and (ii1), see
[16], Lemma 7, page 344. Ol
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Let M be a Z,[G]-module and 0 > M — Y — P — 0 be any exact
sequence with Y an injective Z,[G]-module, we write P = Y g pO),
where P is an injective Z,|G]-module and P has no Z,[G] -injective
components. Then, Q# (M) := PO s the dual of Heller’s loop operator of

M. The module Q#(M) is unique up to isomorphism. Note that Q# is
well defined, since the Krull-Schmidt-Azumaya’s theorem (see [1], (6.12),

page 128) holds for Z,[G]-modules.

We have a concept dual to Q#. Let Y be a projective Z,[G]-module
and write M = MY & M©, where MY is a projective Z,|G]-module
and M© has no Z,[G]-projective components. Then, Q(P):= M is

the Heller’s loop operator of P. The module M G unique up to

isomorphism.
We have (see [17], Proposition 4, page 258).

Proposition 2.8. Let G be a finite ! -group and let H be a subgroup of
G. Then

R[G]

(i) R[G/ H] and G/ H] are indecomposable 7.,[G]-modules.
(i) Q#(R[G/ H]) = R[}(e}[—?]H] as Z,[G]-modules.

(i) If M; and My are Z,[G]-modules, then Q#(M; ® My) = Q#
(M) ® QF (My). O

Proposition 2.9. Let G be a finite (-group and let M be a Z,[G]-
module such that X(M) is a finitely generated 7 ,[G|-module. Then,

X(Q#(M)) = QX(M)).

Proof. See [5], Chapter 7, Theorem 5.1, page 348. O
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The following results are mainly used for the study of the injective

component of a Z,[G]-module.

Theorem 2.10 ([14], Valentini). Let F be an algebraically closed field
of characteristic ¢, G be a finite ( -group, M be a finitely generated F|G]-

module, and let N denote the norm map. If n = dimp N(M), then M =

F[G]" @ P, where F|[G] is not a component of P. O

This result still holds removing the hypothesis that F is an

algebraically closed field. The proof is the same as the one given in [14].

Let M be a Z,[G]-module such that the Pontryagin’s dual X(M) is

finitely generated, G being a finite /-group and M Z,-injective and as

groups, M = R* with sy < o. If ;M denotes the set of elements of M,
whose order divide ¢, then ,M is a finitely generated F,[G]-module. We
have

Theorem 2.11 ([9], Rzedowski-Villa-Madan). Let M and G be given

as above. If ;M = F,[G]" @ U, where F,[G] is not a component of U and

M = R[G]" @ V, where R|G] is not a component of V, then n = m. O

3. Non-Injective Component of Generalized Jacobians

The goal in this section is to obtain an explicit characterization of the

non-injective component of the ¢-part of generalized Jacobians ,%y.

This is Theorem 3.8.

The general Z,[G]-module structure of %u(¢), that is, the
decomposition of ¢ (¢) as direct sum of indecomposable Z,[G]-modules
is given by:

Theorem 3.1 ([18], Villa-Rzedowski). If L/ K is a finite Galois /-
extension of function fields of one variable, then the Z,[G]-module

structure of the generalized Jacobian J(¢) is given by
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Iy (f) = RGP 10 gyg, ®3)

where t is the number of prime divisors of K ramified in L, S an
indecomposable 7,[G]-module such that, as groups, S = R® with s =
|G|(d —1)+1 and d is the minimum number of generators of the Galois

group G. O
Furthermore, in [18], page 46, it was obtained:
HY(G, S) = HYG, ), for all i e Z. ()

In particular, for the ¢ -part of Jy(¢), we obtain from (3),

g =Gy = F Gy (). (5)

In general, an explicit description for the indecomposable Z,[G]-module
S (non-injective component of @ (¢)) is not known. However, we present

a conjecture on the explicit description of S, based in a characterization of
¢S, that we obtain in Theorem 3.8.

Let M be a Z,[G]-module, that is, Z, -divisible and such that X(M)

is finitely generated, that is, as groups, M = R™0,  for some
mo € N U {0}. We have
0>,M->M5M -0, (6)

is an exact sequence of Z,[G]-modules, where ¢ denotes the
homomorphism multiplication by ¢ on M and M = {x € M|x is of

order dividing /}.

From (6), we obtain the exact sequence of cohomology groups
o> HYG, M)5 HYYG, M) > HY(G, M) - )

- HY(G, M)5 HY(G, M)~ .
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From (7), it follows that
Hi(G, M) = C?i—l(M)*'O‘i(M)’

where
= dimy, ,H'(G, M).

Then
H(G, ,S) = C?i—l(s)‘*'ai(s)‘
The cohomology of Z, (see [21], Corollary 4.4.7), is given by
HY G, Z)= HY(G, 7), for all i € Z,
HYG, z)= HYG, 7) = {0},
HO(G, 7) = C‘G‘,
and H2(G, 2) = H*(G,Z)= G| G/,
where G’ denotes the commutator subgroup of G.

In [13], Chapters 1, 4, Sections 4.3 and 4.4, it is proven that

a9(Z)=d and oa3(Z)=r-d,

111

®)

)

(10)
(11
12)

(13)

(14)

where d is the minimum number of generators of G and r is the number

of relations of G.

Proposition 3.2. If S is the Z,[G]-module appearing in Theorem 3.1,

then
dimg, (,89) = d.
Proof. From (9), (4), and (14), we have

HO(G, ,8) = ¢208)aa(S) & c0+d - cd
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From Theorems 3.1 and 2.10, we obtain that dimg, N(,S)= 0. Since
8¢

N(,8)’

follows. O

H°(G, ,S) = we have H°(G, ;S)=,8Y = C¢. The result

Lemma 3.3. If dimIFé,(fSG) =c and c' is the minimum natural

number such that g:S — R[G" is a 7,[G]-monomorphism, then

’

c =¢cC.

Proof. Since g : S — R[G]’ is a Z,[G]-monomorphism, we have the

exact sequence

’ C'
0 - S - R|G[ a@ao.

Considering cohomology groups, we obtain the exact sequence

NG
, c
OaSGaRCa(@J >

Taking ¢ -parts, we have the exact sequence

NG
, C
0—)gSG — FY —>Z(R[g] ]

Therefore o :,S% — F¢ is a monomorphism, therefore, dim]Fé(é,SG)

<c.

On the other hand, since dimp, ([SG) = ¢, it follows that ,S¢ = F¢,

as groups. Furthermore, since R[G]° is an injective Z,[G]-module, it is
obtained the following commutative diagram

;.9“4)"5

Tk
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where ®; is a Z,[G]-monomorphism, thus ¢’ < ¢. This shows the result.

O

Corollary 3.4. Let A be a Z,[G]-module and let e be the minimum

natural number such that there exists a Z,[G]-monomorphism g : A —

R[GY. Then e = dimg, (,A%).
Proof. Let B = dika([AG ). Using Lemma 3.3, we have B = e. O
Let v : R[G] - R bethe augmentation F,[G]-epimorphism given by:

w{zagg] - Yap
geG geG

The R[G]-module, I := ker(y) = { Y a,g  R[G] | > ag =0} is called
geG geG

the augmentation module of R[G].

Theorem 38.5. If S is the Z,[G]-module appearing in Theorem 3.1, we
have

0> S > RG] - Iz >0, (15)

is an exact sequence of 7.,[G]-modules, where as groups, we have R[G]?

= R‘G‘d, I = R‘GH, and S = R‘G‘(d_l)ﬂ.

Proof. From Proposition 3.2 and Lemma 3.3, we obtain the exact

sequence of Z,[G]-modules

0> S — R[G]Y > M - o. (16)

The result will be proved, if M = I as Z,[G]-modules.

Since R[G] is cohomologically trivial, we have H'(G, M)z

H™(G, S). In particular, from (4) and (12), we obtain
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H°(G, M) = H'(G, S) = H°(G, Z) = Cg.
From (16), we obtain the exact sequence of cohomology groups
0> S% 5 (RGIY)Y > M% > H'(G, S) - 0,

where (R[G]?)Y = R? and S¥ = R?. Therefore, M = H'(G, S).
MG
W, we have N(M)—O,
ie., N(M) cn (R[G]) = ker(N(R[G])). On the other hand, if N : R[G] —
R[G] is the Z,[G]-homomorphism given by N(deGagg) =>

Since Cig| = HY G, S)= H°(G, M) =

TeG

deGagg, then n(R[G]) = I5. Therefore M < I;. From the above,

one has the exact sequence of Z,[G]-modules

0> M- I —)IﬁG—)O.

Since H?(G, S) = HY(G, M) = {0}, we obtain the exact sequence of G-

modules
I G
0 —» MC —>Ig —)(MG) - 0.
Thus,

I G
00— C\G\ — C\G\ — (VGJ — 0.

(0}, ie., IMG = {0}, thatis, I = M. O

I

G
e
Hence (ﬁ)

Now, from Proposition 3.2 and Lemma 3.3, the indecomposability of
S, and the definition of Q#, we obtain the exact sequence of Z,[G]-

modules

0 > S > RG] - #(S) - 0, 17)
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where, as groups, we have S = R‘G‘(d_l)ﬂ, R[G]d ~ R‘G‘d, and Q#(S)

= R‘GH.

From (17), and using that R[G] is cohomologically trivial, we obtain

the exact sequence of cohomology groups
0 - 8% 5 (RGIY)Y - (Q#(S))Y - HY(S) > 0. (18)

From (4), in particular, we have H(G, S) = H°(G, 7) = Cal-

Thus, S¢ = (R[G]?)® = R? imply that Q#(S)” = H'(G, S) =

1
=
Q
&
1
EQ

We have proved:
Proposition 3.6. With the above notations, we have dimp, (,Q
(8)%) =1. O
Proposition 3.7. With the notation as above, we have
I = Q#(S).

Proof. We obtain the result applying Schanuel’s lemma (see Remark
2.2) to the exact sequences (17) and (15). O

Theorem 3.8. Let 0 > W — F,[G]® >, >0 be any exact

sequence of G-modules, with d the minimum number of generators of G.
Then

(S =W.
More explicitly, we consider the epimorphism
9:FJ[G) -1 = (o -1lo € G),

given by

9(&1’ €25 wevs ‘:d) = &i(ci _1)’

d
1=1
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where G = (o1, ..., o4) and 9 is induced by:
9(1,0,...,0,0) =07 -1,

90,1, ...,0,0) =09 — 1,

90,0, ...,0,1) == og - 1.
Then ,S = ker(9).

Proof. Taking / -parts in the exact sequence (15), we obtain the exact

sequences
0,8 - F,JGI - ,I5 - 0,
0> W - FJGI > ,Is — 0.

We have the statement using Schanuel’s lemma (see Remark 2.3). O

Now, keeping in mind Theorem 3.8 and the cyclic case, that is, if

L/ K is a cyclic finite /-extension, the non-injective component of the
Galois module structure of the generalized Jacobian %y (¢) is S = R. In

this case, d =1 and S = R, it is characterized by the exact sequence
0->S=R- R[G]—> Iz — 0.
In other words, the cylic case gives evidence for the following:

Conjecture 3.9. Let I; be the augmentation module and © : R[G]*

— I, the epimorphism given by

d
(&, &, s &) = ) &ilo; 1),
i=1

where G = (o, ..., 04), d is the minimum number of generators of G

and O is induced by:
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©(1,0,...,0,0) =0 -1,

00,1, ...,0,0) = cq — 1,

©(0,0,...,0,1) == 54 - 1.

Then, S = ker(®).
4. A G-Exact Sequence of ,S

The main result of this section is Theorem 4.3, which has as a
consequence to establish an exact sequence of ,S. It allows us to obtain

another characterization of ,S. The following result is used for its proof.
Proposition 4.1. Let A be a F,[G]-module,

o =min{n eN| there exists an epimorphism of F,[G]- modules ¢:F,[G]"

— A},

and

B =min{m e N| there exists a monomorphism of F,[G]-modules A:X(A)

- F,/[G]"}.

Then o = p.

Proof. We have the following exact sequence

0 ker ¢ F,G]* —2— A > 0.

Applying Pontrjagin’s dual and using (i) and (iv) of Lemma 2.7, we obtain
the exact sequence

0 > X(A) > Fy[G]* ——— X(ker ) ——— 0.

Since B is the minimum, it follows that B < a. On the other hand, from

the exact sequence
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0 X(A)—2 TGP coker(A) —— 0,

taking Pontrjagin’s dual and using Lemma 2.7, we obtain

0 ——> X(coker(A)) —— F,[G] > A 5 0.
Since o 1s the minimum, we have o < f. O
Proposition 4.2. With the notation as above, we have
dimy, (X(,8)7) =, (19)

where r denotes the number of relations of the group G.

Proof. Using the duality theorem for cohomology groups, that is,
H(G, x(B)) = X(H'™(G, B)), forall j € Z (see [21], 4-4-6), we have

H°(G, 2(,8)) = X(H'(G, ,S)).
From (9), (14), and (4), we obtain H (G, ,S) = C/. Hence
HY(G, X(,8)) = X(H'(G, ,8)) = X(C7),
and since S has no injective components, using Theorem 2.11, we
conclude that dimg, N(X(,S)) = 0. Then EE(KS)G =~ X(C}). Finally by

Lemma 2.7, we obtain r = dimp, (%(ZS)G )- O

Next, we present a different proof of Proposition 4.2, without using

duality theorem for cohomology groups.

Taking /¢-parts in the exact sequence (15), we obtain the exact

sequence
0 >,8 - F,J[G® - ,Iz - 0. (20)

Applying Pontrjagin’s dual and using Lemma 2.7, we obtain the exact

sequence

0 x(,1g) — x(F,[G]") - x(,8) -0,
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that is,
0> x(,Ig) > F,[GY > x(,8) > 0. (21)
On the other hand, we have the exact sequence
0 —>,Ig - F)J[G] > F, >0, (22)

applying Pontrjagin’s dual to (22) and using Lemma 2.7, we obtain the
exact sequence

0> F, > F/|[G] > x(,Ig) —> 0. (23)
Therefore,

F,[G]

xX(,Ig) = as F,[G]-modules. (24)

Now, from (24) and (21), we obtain the exact sequence
Oa%—)FZ[G]d - X(,8) - 0. (25)
l

Since F,[G]? is cohomologically trivial, we obtain

%(,8)° = Hl(G, %{G]}

From the exact sequences (23), (24), and since F,[G] is cohomologically

trivial, we have

Hl(G, ng—[f]j = H%(G, F,).

On the other hand, from (8), we obtain
H2(G, F,) = H2(G, ,R) = ca(B)+aa(R), (26)

Furthermore, we have the exact sequence

0->%Z, >Q, > R-—>0.
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Since Q, is cohomologically trivial, we obtain
HYG, R) = H"Y(G, 7,) = H*Y(G, 7). (27)
Finally, from (26), (27), and (14), we have
%(,8)% = H¥G, F,) = C?Z(Z)m?’(z) = Cf+(r_d) = CJ.

Theorem 4.3. Let L/ K be a finite Galois ¢ -extension of function
fields and let G = Gal(L / K). Then

(i) There exists an F,[G]-epimorphism

f : F[[G]r —)gS,
where r is the number of relations of G.
(i) ;S is an indecomposable F,[G]-module.

Proof. The proof of (i) is obtained from Lemma 3.3 and Propositions

4.2 and 4.1. Now, we assume that ,S = A® B for some non trivial
F,[G]-modules A and B, that is, ;S is not indecomposable. From (9) and

(4), we have
H(G, ,S) = ¢i1@raiz(@)
In particular, H'(G, ,S) = ¢20@*e1(Z) = ¢, Then
C, = H(G, ,S)= H G, A)@H'(G, B),

thus HY(G, A) = {0} or H(G, B) = {0}. From [11], Theorem 5, page 142,
we obtain A = F,[G]* or B = F,[G], which is impossible. Therefore, ;S
is an indecomposable F,[G]-module. O

Since ;S is an F,[G]-module, F,[G]" is a projective F,[G]-module
and f : F/[G] —,S is an F,[G]-epimorphism, we may write N = ker f

= NO @& N where N isa projective F,[G]-module and NO does
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not contain any projective component, we have Q( /S )=N ©), By the

Krull-Schmidt-Azumaya theorem, we have
ker f = Q(,S)®F,[G]". (28)
From Theorem 4.3, we obtain the exact sequence of F,[G]-modules
0 - ker f - F/[G] —,8 = 0. (29)
Since F,[G]" is cohomologically trivial, we obtain
HY(G, ,S)= H*(G, ker f). (30)

Proposition 4.4. We have what H°(G, ker f) = C7.

Proof. The result follows from (30), (9), (4), and (14). O
Proposition 4.5. With the notation as above, we have

@ ker f = Qf,5S).
(i1) The following sequence of F,[G]-modules is exact
0 - Q(,S) > F/J[G] -»,S - o0. (31)

Proof. (1i) follows from (i) and the exact sequence (29).

On the other hand, from (29), we obtain the exact sequence of

cohomology groups
G r\G G 1
0 — (ker /)" — (F,[G]" )" —»,S” - H (G, ker f) — 0.
Since (F,[G]' )¢ = F, we have

[ I s
(er /)] [HY(G, Ker f)

;8¢

From (30), we obtain H'(G, ker f) = H(G, ,S) = NGS)
/

Thus,
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,8%]
1,89 NG, S)

Since S has not components R[G], applying Theorem 2.11, we have
N(,S) = {0}, thatis, |[N(,S)| = 1. Therefore,

|(er £)| = |F}| = ¢".
Using Proposition 4.4, we obtain |[N(ker )| = 1. Thus,
dimp, N(ker f) = 0.
Finally, from Theorem 2.11, we obtain that x = 0 in (28), proving (i). [

Proposition 4.6. With the notation as above, we have

Proof. By Proposition 4.5, we have the exact sequence of F,[G]-

modules
0> Q(,S) > F/JG] »,8S>o0. (32)
On the other hand, we have the exact sequence of F,[G]-modules

F,[GI
Q)

0 - Q(,S)-> F/J[G] - — 0. (33)

Applying, Schanuel’s lemma (see Remark 2.3) to the exact sequences (32)
and (33), we obtain the result. O

Proposition 4.7. With the notation as above, we obtain

F/[GT

Q#(Q(,9)) = oS

Proof. The result is obtained by the exact sequence (33), and from the

r
fact that F[G] has no F,[G]-injective components. O
a(,8)
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5. Implicit Characterization of ,¢,;,

The goals in this section are two. The first is to obtain an exact

sequence of F,[G]-modules, which characterizes implicitly in all cases,
the F,[G]-module structure of ,%). That is, we obtain implicitly the
Galois module structure of ,¢, this is, (39). The second objective is to

obtain explicitly the Galois module structure of the dual of the /-part of
the generalized Jacobian X(,Jg ).

We Dbegin analyzing the decomposition as direct sum of
indecomposable Z,[G]-modules of % (¢) for the case, when L /K is

unramified. In this case, the result is known in complete generality.
Theorem 5.1 ([10], Rzedowski-Villa). Let L/ K be a finite Galois

unramified / -extension of function fields with Galois group G. Then, the

Galois module structure of ¢y (¢) is given by

() = RigPe Dot Bl jes, (31
R[G]) _ R[G]* . .
#| L ~ .
where Q ( I j_ RIC] and S is the Z,[G]-module given in the
R
Theorem 3.1.
Proof. See, [10], Theorem 3.1, page 558. O

In particular, considering the ¢ -part of ¢ (¢), from (34), we obtain

d
o, = [P g LT s (35)

F,

The following result exhibits a relationship between the F,[G]-modules

F,[G]
F,

¢S and
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F,[G]
¢

Proposition 5.2. If T = and ;S is the (-part of the Z,[G]-

module S, then

/S = X(Q#(T)) as F,[G]-modules.

Proof. From Proposition 3.7, we have I; = Q#(S). Taking / -parts,
we obtain ,I; = Q#(,S). From Pontrjagin’s dual, we obtain X(Ig) =

[G]

X(Q#(,8)). Lemma 2.7, (iii), implies that X(,I5) = F{F— Therefore,
l

F,[G]
Fy

= X(Q#%(,9)).

Using properties of X and Q (see Proposition 2.9), we obtain

F,[G]
Fy

= X(Q#(,8)) = Qx(,9)).

Taking Pontrjagin’s dual and using Proposition 2.4, we have
X(T) = 2(Q(x(,9))) = X(X(Q#(,8))) = Q#(,S).
Applying Heller’s loop operator, we obtain
QX(T) = Q(QH(,8)) =,8.
Finally, we have
xX(Q#H(T)) =,S. O

In the unramified case, we obtain from Proposition 5.2 and (35)

d d
F, F,

where gg denotes the genus of K and d denotes the minimum number of

generators of G.
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On the other hand, applying Pontrjagin’s dual to ,Jy in (5), we

obtain

X(,Im) = X(FK[GFgKH_I_d@ /S)- (37)
Since, for F,[G]-modules M; and My, we have
%(Ml @ M2) = HomF((Ml ® Mz, IF@) = HOHIH:[(Ml, F[)(‘D HOHI]F[(M2, F[)

= X(M;)® x(My).
If follows that
- 28k +t-1-d
X(,Jyn) = X(F/[G] )® x(,S).

We have proved, using Lemma 2.7 and Propositions 2.4 and 5.2.

Theorem 5.3. Let L/ K be a finite Galois ¢ -extension of function

fields with field of constants k, an algebraically closed of characteristic
p # (. Then, the F,[G]-module structure of the dual of the (-part of the

generalized Jacobian %(fq]lm ) is given by
F,[G]

F,[G]
F,

2(,Ip) 2 F[GPEE T

Next, we are interested in analyzing the F,[G]-module structure of the
¢ -part of the usual Jacobian ¢,z (/) in the general case, i.e., the implicit

characterization of ,% for an arbitrary finite ¢-extension.

Taking /-parts in the exact sequence (1), we obtain the exact

sequence of F,[G]-modules

0 R (o ——> G, 0. (38)

From Theorems 3.1 and 4.3, we have
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¢ Com =~ [, [G‘]Q:‘H\' —1+t—dg .S
Tid T;‘
I [G]z-'”" —ltt—dtr [(',‘]2!;1\' —1+t—dg F,[C]"

That is, we have an F,[G]-epimorphism

fi = G, f) 2 BJGPERTTET o o
Then,

d =70 fl : Ff[G]ZgKthilidJrr —)g((c)oL
is an F,[G]-epimorphism.

Therefore, we have the commutative diagram

0 R ¢Com B ¢Cor, —0

=S

0 > ker ¢ > Fy[G)2ox —1+t—d+r

From Schanuel’s lemma (see Remark 2.3) follows that the diagram

characterizes ;¢ as F,[G]-module. In short, we obtain the exact

sequence of F,[G]-modules

0 ker @ F,[GPEk1H-d+r @, @, 0.(39)

Theorem 5.4. Let L/ K be a finite abelian ( -extension of function

fields with field of constants k, an algebraically closed of characteristic
p # . Then, the F,[G]-module structure of ;% is given implicitly by

G = F[GPEE D)@y O# (ker @), (40)
where dy denotes the minimum number of generators of G/|T =
Gal(K™ | K), with K™ the maximal unramified extension of K in L.

Proof. By the Krull-Schmidt-Azumaya theorem (see [1]), we have

16 = ADB,



ON THE NON-INJECTIVE COMPONENT AS GALOIS ... 127

where A is an injective F,[G]-module and B has no injective components.

Applying the dual of Heller’s loop operator to the exact sequence (39), we

obtain

B = Q#(ker @).

On the other hand, for A, in [4], it was proved, in the case, when L/ K is

a finite abelian /-extension, what A = IF@[G]Z(gK ~) | where dy denotes

the minimum number of generators of G /T = Gal(K""" / K), with K",

the maximal unramified extension of Kin L. O
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